Fixing fuel poverty – is there a healthier way?

Fuel poverty causes misery and ill-health – and alleviating fuel poverty by retrofitting homes could potentially offer valuable savings to the health services. However, different approaches to retrofit are likely to have different impacts on health.

The first in this two-part series, published in Green Building in December 2014, looks at how cold, damp homes can harm people’s heath, and at the evidence to date that retrofit can improve matters.  It also explores some pioneering efforts by concerned health organisations to tackle the ill health of their vulnerable patients where it starts – by fixing their cold homes.

The second part, due to be published in Spring 2015, will look a little more closely at different retrofit strategies, and the risks and benefits to occupants – and to the buildings themselves.

PDF download: Fuel poverty and health – Part 1

Continue reading

Prescribing healthy homes

The National Institute for Health and Care Excellence (NICE) recently ran a consultation on the guidance they give to health bodies and local authorities on reducing the burden of winter deaths and illnesses from cold homes.

The AECB (Association for Environment Conscious Building) along with the STBA (Sustainable Traditional Buildings Alliance) and Severn Wye Energy Agency submitted a  response, which I helped to draft.

The response welcomed the idea that health professionals should be involved in identifying and tackling unhealthy homes. It also emphasised that excess winter deaths and illnesses were almost certainly due to a combination of low indoor temperatures and poor indoor air quality (exacerbated by cold surfaces in uninsulated homes, and by occupants restricting ventilation to keep out cold draughts), and that an emphasis on low temperatures alone could miss significant causes of ill-health – and valuable remedies.

You can download the response here: NICE excess winter deaths and illnesses consultation response

You can also find out more about the original NICE consultation on the AECB website here

 

Healthy buildings – feature in Green Building magazine

Most people spend 80 – 90% of their time indoors, which means the indoor environment is where people meet many of the influences that affect their health and wellbeing, for good or ill. The impact is serious: just one condition affected by the indoor environment, asthma, kills three people a day and costs the country millions of pounds annually.

We all want the buildings we create and  occupy to be healthy, and the sustainable building world often makes special claims to be creating healthy spaces. But are we directing our attention the right way? Which hazards are most important – and which can we actually do anything about?

In this article for the Spring 2014 issue of Green Building magazine, I have a look at the indoor hazards that might affect out health, and consider which ones we can do anything about – and how they might be tackled.

Download the article in pdf, for references and links: Healthy Buildings


Natural ventilation – does it work?

While mechanical ventilation is sometimes perceived as problematic, expensive and possibly even energy-guzzling, natural ventilation often seems to be seen as – well – “natural” – a safe, old-fashioned,  reliable default solution. In this article for Passive House Plus I had a look at this assumption.

Theoretical modelling suggests that natural ventilation is likely to be rather unreliable, with the same building at risk of both under- and over-ventilation under different weather conditions. But what happens in practice?

The first problem I had was finding some data: there is very little of it.

In the studies I was able to find, it turned out that indoor air quality in naturally ventilated homes (including levels of relative humidity, oxides of nitrogen, and volatile organic compounds, for example) is not what it should be. (I also found some studies from schools raising similar concerns, but there wasn’t room to write about these as well).

For example, a study of 22 homes built to the 2006 Part F regulations for ventilation found that about half of them failed to achieve their recommended background ventilation rate even with all vents open/fans running as intended; pollutants exceeded the guideline levels in a number of them.

But what was really worrying was that when the researchers first arrived, they found that many of the vents were closed, and many of the extract fans (both in bathrooms and kitchens) had been disabled at the isolator. Similar findings appeared in all of the studies I was able to track down.

Unfortunately we do not seem to be very sensitive to the high relative humidity and other pollutants than are, nonetheless, dangerous to our health – but we are sensitive to draughts, and noise. This means that vents get closed and fans shut off, and our living conditions are unhealthier than they should be as a consequence.

What was interesting was to find that poor indoor air quality is not a new problem; studies dating back to long before airtightness was much of an issue, showed similarly poor indoor air quality and low ventilation rates. So the comfortable belief that natural ventilation is somehow “tried and tested” probably needs revisiting.

We seem to be facing a ventilation performance gap as worrying as the energy performance gap. As with energy performance, designers seem to have checked compliance with the Part F recommendations, looked at the results from their modelling exercises, and assumed this means a building is going to be properly ventilated in practice. As with energy performance, monitoring data shows this just isn’t the case.

At least the energy performance gap is now on the agenda – and we are even getting some practical solutions discussed. But despite the huge costs to the nation of respiratory diseases like asthma, and numerous other ailments worsened by poor air quality, ventilation is too often taken for granted. It’s probably time this changed.

 Read the article in pdf here Natural ventilation – does it work?

My thanks to Passive House Plus for the use of this document.

I have now added a post containing links to a number of the references used in this article, here.